


### КОМПАКТНАЯ ПРОМЕЖУТОЧНАЯ ОПОРА



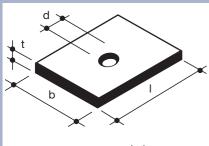




Неармированная сверхпрочная эластомерная опора Термическая сепарация в несущих стальных конструкциях

### Расчетные формулы опоры

| Содержание                         | Стр. |
|------------------------------------|------|
| Описание продукта                  | 2    |
| Расчетные формулы                  | 2    |
| Данные по материалу                | 2    |
| Спецификация                       | 3    |
| Коэффициенты формы                 | 3    |
| Эластичная деформация 1            | 4    |
| Эластичная деформация 2            | 5    |
| Расчетная таблица 1 (t = 5, 10 mm  | ) 6  |
| Расчетная таблица 2 (t = 15, 20 mr | m) 7 |
| Расчеты опоры между концевыми      | ı    |
| пластинами на стыке балок          | 8-10 |
| Реакции пружины                    | 10   |
| Характеристики                     | 11   |
| Области применения                 | 11   |
| Материал                           | 11   |
| Размеры, виды поставки             | 11   |
| Акты испытаний,                    |      |
| свидетельства соответствия         | 12   |
| Характер горения                   | 12   |
| Стандартные прорези                | 12   |


### Описание продукта

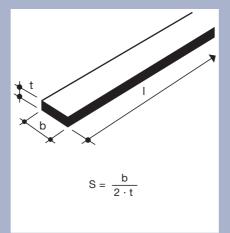
Компактная промежуточная опора фирмы «Calenberg» представляет собой неармированную сверхпрочную эластомерную опору с гладкой поверхностью. Продукт четко отличается от других опор краснокоричневым цветом материала.



| Данные по материалу                                        |                                                               |  |  |  |  |  |  |  |  |  |
|------------------------------------------------------------|---------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Твердость материала                                        | 40 ± 5 [Шор-D]; t = 5, 10, 15 mm<br>60 ± 5 [Шор-D]; t = 20 mm |  |  |  |  |  |  |  |  |  |
| Теплопроводностьλ                                          | 0,2 [W/m · K]                                                 |  |  |  |  |  |  |  |  |  |
| Диапазон температуры                                       | -20 to +70°C                                                  |  |  |  |  |  |  |  |  |  |
| Поверхностное удельное сопротивление согласно DIN EN 20284 | $7,5\cdot 10^{10}\Omega$                                      |  |  |  |  |  |  |  |  |  |
| Объемное удельное сопротивление согласно DIN IEC 93        | 2,1 · 10 <sup>12</sup> Ω cm                                   |  |  |  |  |  |  |  |  |  |






Без отверстия: 
$$S = \frac{I \cdot b}{2 \cdot t (I + b)}$$

C отверстием: 
$$S = \frac{4 \cdot l \cdot b - \pi \cdot d^2}{4 \cdot t \left(2 \cdot l + 2 \cdot b + \pi \cdot d\right)}$$

#### Коэф-т формы для прямоуг. опоры

### Спецификация

Поставка компактной промежуточной опоры фирмы «Calenberg», неармированной однородной эластомерной опоры в соответствии с DIN 4141 часть 3, опорный класс 2, целиком красно-коричневого цвета, с гладкой поверхностью, допустимая нагрузка в зависимости от формата до средней компрессионной нагрузки 30 N/mm², Федеральное техническое свидетельство № Р-852.0448.



Коэф-т формы для ленточной опоры

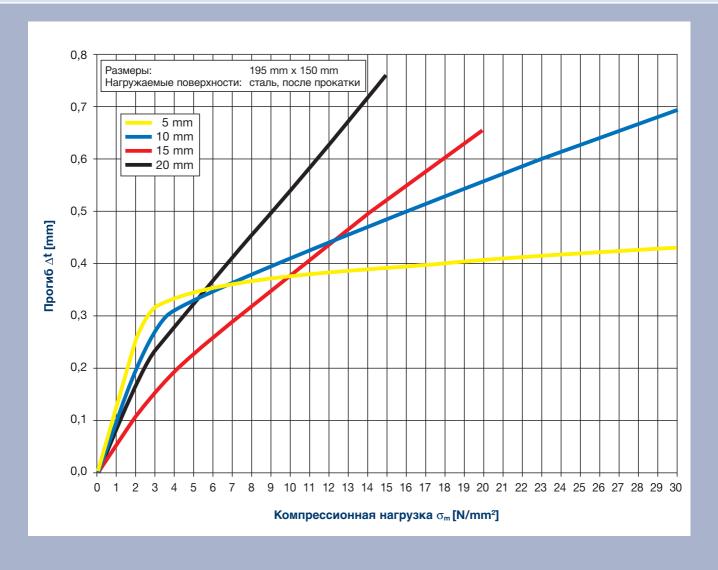
### а) Стандартный монтаж

| Длина:      | mm   |
|-------------|------|
| Ширина:     | mm   |
| Толщина:    | mm   |
| Количество: | ШТ.  |
| Цена:       | €/шา |

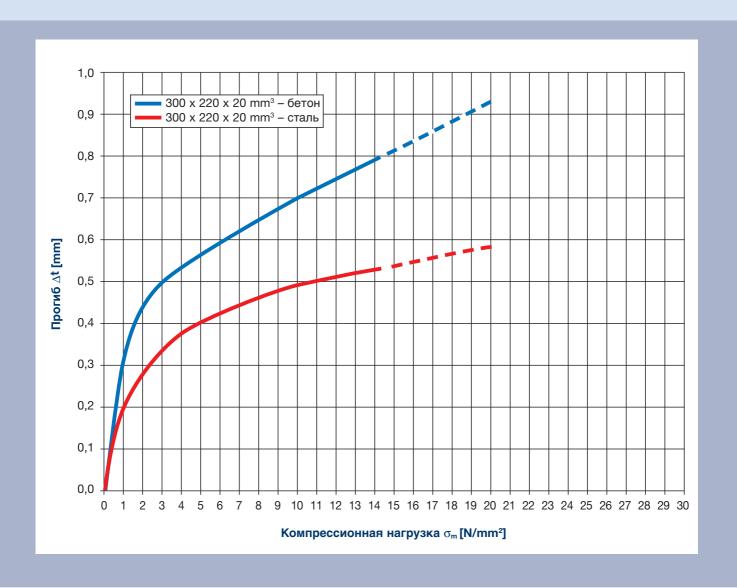


Коэф-т формы для круглой опоры

# b) Встроенная в полистирен или пожарозащитный кожух из цифламона


Общая ширина: ...... mm Ширина эластомера: ..... mm Толщина: ..... mm Количество: ..... m Цена: ...... €/m

#### Поставщик:


Calenberg Ingenieure GmbH Am Knübel 2-4 D-31020 Salzhemmendorf/Germany Phone +49(0)5153/9400-0 Fax +49(0)5153/9400-49

### Коэффициенты формы

# Прогиб 1







# Прогиб 2

# Расчетная таблица 1

| Комп    | Компактная промежуточная опора, толщина <b>5 и 10 mm</b> толщина Ширина |      |      |      |      |      |       |       |       |       |       |       |       |                   |      |      |            |      |      |
|---------|-------------------------------------------------------------------------|------|------|------|------|------|-------|-------|-------|-------|-------|-------|-------|-------------------|------|------|------------|------|------|
| Толщина | Ширина                                                                  |      |      |      |      | Kon  | ипрес | сионн | ая на | грузк | а, до | пусти | мая о | <sub>m</sub> [N/n | nm²] |      |            |      |      |
| опоры   | опоры                                                                   |      |      |      |      |      | '     |       |       | на оп |       |       |       |                   |      |      |            |      |      |
| t       | b                                                                       |      |      |      |      |      |       |       |       |       | _     |       |       |                   |      |      |            |      |      |
| [mm]    | [mm]                                                                    | 50   | 60   | 70   | 80   | 90   | 100   | 120   | 130   | 150   | 170   | 180   | 200   | 250               | 300  | 350  | 400        | 450  | 500  |
|         | 50                                                                      | 13,9 | 16,0 | 17,7 | 19,3 | 20,8 | 22,1  | 24,3  | 25,2  | 26,9  | 28,3  | 28,9  |       |                   |      |      |            |      |      |
|         | 60                                                                      | 16,0 | 18,6 | 21,0 | 23,1 | 25,1 | 26,9  |       |       |       |       |       |       |                   |      |      |            |      |      |
|         | 70                                                                      | 17,7 | 21,0 | 23,9 | 26,7 | 29,2 |       |       |       |       |       |       |       |                   |      |      |            |      |      |
|         | 80                                                                      | 19,3 | 23,1 | 26,7 |      |      |       |       |       |       |       |       |       |                   |      |      |            |      |      |
|         | 90                                                                      | 20,8 | 25,1 | 29,2 |      |      |       |       |       |       |       |       |       |                   |      |      |            |      |      |
|         | 100                                                                     | 22,1 | 26,9 |      |      |      |       |       |       |       |       |       |       |                   |      |      |            |      |      |
| 5       | 110                                                                     | 23,2 | 28,5 |      |      |      |       |       |       |       |       |       |       |                   |      |      |            |      |      |
| 5       | 120                                                                     | 24,3 |      |      |      |      |       |       |       |       |       |       |       |                   |      |      |            |      |      |
|         | 130                                                                     | 25,2 |      |      |      |      |       |       |       |       |       |       |       |                   |      |      |            |      |      |
|         | 140                                                                     | 26,1 |      |      |      |      |       |       |       |       |       |       |       |                   |      | 2    | <b>^</b> ^ |      |      |
|         | 150                                                                     | 26,9 |      |      |      |      |       |       |       |       |       |       |       |                   |      | 3    | 0,0        |      |      |
|         | 160                                                                     | 27,6 |      |      |      |      |       |       |       |       |       |       |       |                   |      |      |            |      |      |
|         | 170                                                                     | 28,3 |      |      |      |      |       |       |       |       |       |       |       |                   |      |      |            |      |      |
|         | 180                                                                     | 28,9 |      |      |      |      |       |       |       |       |       |       |       |                   |      |      |            |      |      |
|         | 200                                                                     |      |      |      |      |      |       |       |       |       |       |       |       |                   |      |      |            |      |      |
|         | 50                                                                      | 5,4  | 6,0  | 6,6  | 7,0  | 7,4  | 7,8   | 8,4   | 8,7   | 9,1   | 9,5   | 9,7   | 10,0  | 10,6              | 11,0 | 11,4 | 11,7       | 11,9 | 12,1 |
|         | 60                                                                      | 6,0  | 6,8  | 7,5  | 8,1  | 8,6  | 9,1   | 10,0  | 10,4  | 11,0  | 11,6  | 11,9  | 12,3  | 13,2              | 13,9 | 14,5 | 14,9       | 15,2 | 15,5 |
|         | 70                                                                      | 6,6  | 7,5  | 8,3  | 9,1  | 9,8  | 10,4  | 11,6  | 12,1  | 13,0  | 13,8  | 14,1  | 14,7  | 16,0              | 17,0 | 17,7 | 18,4       | 18,9 | 19,3 |
|         | 80                                                                      | 7,0  | 8,1  | 9,1  | 10,0 | 10,9 | 11,7  | 13,1  | 13,7  | 14,9  | 15,9  | 16,3  | 17,2  | 18,9              | 20,2 | 21,2 | 22,1       | 22,8 | 23,3 |
|         | 90                                                                      | 7,4  | 8,6  | 9,8  | 10,9 | 11,9 | 12,8  | 14,5  | 15,3  | 16,7  | 18,0  | 18,6  | 19,6  | 21,8              | 23,5 | 24,8 | 26,0       | 26,9 | 27,7 |
|         | 100                                                                     | 7,8  | 9,1  | 10,4 | 11,7 | 12,8 | 13,9  | 16,0  | 16,9  | 18,6  |       | 20,8  | 22,1  | 24,8              | 26,9 | 28,6 |            |      |      |
| 10      | 150                                                                     | 9,1  | 11,0 | 13,0 | 14,9 | 16,7 | 18,6  | 22,1  | 23,7  | 26,9  | 29,8  |       |       |                   |      |      |            |      |      |
| .0      | 200                                                                     | 10,0 | 12,3 | 14,7 | 17,2 | 19,6 | 22,1  | 26,9  | 29,2  |       |       |       |       |                   |      |      |            |      |      |
|         | 250                                                                     | 10,6 | 13,2 | 16,0 | 18,9 | 21,8 | 24,8  |       |       |       |       |       |       |                   |      |      |            |      |      |
|         | 300                                                                     | 11,0 | 13,9 | 17,0 | 20,2 | 23,5 | 26,9  |       |       |       |       |       |       |                   |      |      |            |      |      |
|         | 350                                                                     | 11,4 | 14,5 | 17,7 | 21,2 | 24,8 | 28,6  |       |       |       |       |       |       |                   |      | 2    | n          | 1    |      |
|         | 400                                                                     | 11,7 | 14,9 |      | 22,1 | 26,0 |       |       |       |       |       |       |       |                   |      | J    | 80,0       |      |      |
|         | 450                                                                     | 11,9 | 15,2 | 18,9 | 22,8 | 26,9 |       |       |       |       |       |       |       |                   |      |      |            |      |      |
|         | 500                                                                     | 12,1 | 15,5 | 19,3 | 23,3 | 27,7 |       |       |       |       |       |       |       |                   |      |      |            |      |      |
|         | 600                                                                     | 12,3 | 16,0 | 19,9 | 24,3 | 28,9 |       |       |       |       |       |       |       |                   |      |      |            |      |      |



| Компактная промежуточная опора, толщина <b>15 и 20 mm</b> |            |                                                            |            |            |            |            |            |            |              |              |              |              |              |              |              |              |              |              |              |  |  |
|-----------------------------------------------------------|------------|------------------------------------------------------------|------------|------------|------------|------------|------------|------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--|--|
| Толщина                                                   | Ширина     | Компрессионная нагрузка, допустимая σ <sub>m</sub> [N/mm²] |            |            |            |            |            |            |              |              |              |              |              |              |              |              |              |              |              |  |  |
| опоры                                                     | опоры      | Длина опоры I [mm]                                         |            |            |            |            |            |            |              |              |              |              |              |              |              |              |              |              |              |  |  |
| t                                                         | b          |                                                            |            |            |            |            |            |            |              |              | •            |              |              |              |              |              |              |              |              |  |  |
| [mm]                                                      | [mm]       | 50                                                         | 60         | 70         | 80         | 90         | 100        | 120        | 130          | 150          | 170          | 180          | 200          | 250          | 300          | 350          | 400          | 450          | 500          |  |  |
|                                                           | 100        | 4,8                                                        | 5,4        | 6,1        | 6,7        | 7,2        | 7,8        | 8,7        | 9,2          | 10,0         | 10,7         | 11,0         | 11,7         | 12,9         | 13,9         | 14,7         | 15,4         | 16,0         | 16,4         |  |  |
| L                                                         | 110        | 4,9                                                        | 5,7        | 6,4        | 7,0        | 7,7        | 8,3        | 9,4        | 9,9          | 10,8         | 11,7         | 12,1         | 12,8         | 14,3         | 15,5         | 16,5         | 17,4         | 18,0         | 18,6         |  |  |
| ļ                                                         | 120        | 5,1                                                        | 5,9        | 6,6        | 7,4        | 8,1        | 8,7        | 10,0       | 10,6         | 11,7         | 12,6         | 13,1         | 13,9         | 15,7         | 17,2         | 18,4         | 19,3         | 20,2         | 20,9         |  |  |
| L                                                         | 130        | 5,2                                                        | 6,1        | 6,9        | 7,7        | 8,5        | 9,2        | 10,6       | 11,2         | 12,4         | 13,6         | 14,1         | 15,0         | 17,1         | 18,8         | 20,2         | 21,4         |              | 23,2         |  |  |
| Ļ                                                         | 140        | 5,3                                                        | 6,2        | 7,1        | 8,0        | 8,8        | 9,6        | 11,1       | 11,9         | 13,2         | 14,4         | 15,0         | 16,1         | 18,5         | 20,4         | 22,1         | 23,4         | -            | 25,6         |  |  |
|                                                           | 150        | 5,4                                                        | 6,4        | 7,3        | 8,2        | 9,1        | 10,0       | 11,7       | 12,4         | 13,9         | 15,3         | 16,0         | 17,2         | 19,8         | 22,1         | 23,9         | 25,5         | 26,9         | 28,1         |  |  |
| 15                                                        | 200        | 5,9                                                        | 7,0        | 8,2        | 9,3        | 10,5       | 11,7       | 13,9       | 15,0         | 17,2         | 19,2         | 20,2         | 22,1         | 26,3         |              |              |              |              |              |  |  |
| .0                                                        | 250        | 6,2                                                        | 7,4        | 8,8        | 10,1       | 11,5       | 12,9       | 15,7       | 17,1         | 19,8         | 22,5         | 23,8         | 26,3         |              |              |              |              |              |              |  |  |
|                                                           | 300        | 6,4                                                        | 7,8        | 9,2        | 10,8       | 12,3       | 13,9       | 17,2       | 18,8         | 22,1         | 25,3         | 26,9         |              |              |              |              |              |              |              |  |  |
| -                                                         | 350        | 6,6                                                        | 8,0        | 9,6        | 11,3       | 13,0       | 14,7       | 18,4       | 20,2         | 23,9         | 27,7         | 29,5         |              |              |              |              |              |              |              |  |  |
|                                                           | 400        | 6,7                                                        | 8,2        | 9,9        | 11,7       | 13,5       | 15,4       | 19,3       | 21,4         | 25,5         | 29,7         |              |              | 30,0         |              |              |              |              |              |  |  |
| -                                                         | 450        | 6,8                                                        | 8,4        | 10,1       | 12,0       | 13,9       | 16,0       | 20,2       | 22,4         | 26,9         |              |              |              |              |              | υ,ι          | U,U          |              |              |  |  |
|                                                           | 500        | 6,9                                                        | 8,5        | 10,3       | 12,3       | 14,3       | 16,4       | 20,9       | 23,2         | 28,1         |              |              |              |              |              |              |              |              |              |  |  |
| -                                                         | 550        | 6,9                                                        | 8,7        | 10,5       | 12,5       | 14,6       | 16,8       | 21,5       | 24,0         | 29,1         |              |              |              |              |              |              |              |              |              |  |  |
|                                                           | 600        | 7,0                                                        | 8,7        | 10,7       | 12,7       | 14,9       | 17,2       | 22,1       | 24,6         |              |              |              |              |              | 1            |              | 100          |              | 100          |  |  |
|                                                           | 100        | 3,6                                                        | 4,0        | 4,4        | 4,8        | 5,1        | 5,4        | 6,0        | 6,3          | 6,8          | 7,2          | 7,4          | 7,8          | 8,5          | 9,1          | 9,6          | 10,0         |              | 10,6         |  |  |
|                                                           | 110        | 3,7                                                        | 4,2        | 4,6        | 5,0        | 5,4        | 5,7        | 6,4        | 6,7          | 7,3          | 7,8          | 8,0          | 8,5          | 9,4          | 10,1         | 10,7         | 11,2         |              | 11,9         |  |  |
|                                                           | 120        | 3,8                                                        | 4,3        | 4,8        | 5,2        | 5,6        | 6,0        | 6,8        | 7,1          | 7,8          | 8,4          | 8,6          | 9,1          | 10,2         | 11,0         | 11,7         | 12,3         | _            | 13,2         |  |  |
|                                                           | 130        | 3,9                                                        | 4,4        | 4,9        | 5,4        | 5,9        | 6,3        | 7,1        | 7,5          | 8,2          | 8,9          | 9,2          | 9,8          | 11,0         | 12,0         | 12,8         | 13,5         |              | 14,6         |  |  |
|                                                           | 140        | 4,0                                                        | 4,5        | 5,0        | 5,6        | 6,1        | 6,6        | 7,5        | 7,9          | 8,7          | 9,4          | 9,8          | 10,4         | 11,8         | 13,0         | 13,9         | 14,7         | 15,4         | 16,0         |  |  |
| }                                                         | 150<br>200 | 4,0<br>4,3                                                 | 4,6<br>5,0 | 5,2<br>5,7 | 5,7<br>6,4 | 6,3        | 6,8        | 7,8<br>9,1 | 8,2          | 9,1<br>11,0  | 9,9          | 10,3         | 11,0         | 12,6<br>16,4 | 13,9<br>18,6 | 15,0<br>20,4 | 16,0<br>22,1 | 16,7<br>23,5 | 17,4<br>24,8 |  |  |
| <b>20</b> +                                               | 250        | 4,5                                                        | 5,0        |            | 6,9        | 7,1<br>7,7 | 7,8        | 10,2       | 9,8          |              | 12,2         | 12,8         | 13,9         |              | - '          | 25,6         |              | 23,5         | 24,0         |  |  |
|                                                           | 300        | 4,5                                                        | 5,2        | 6,1<br>6,3 | 7,2        |            | 8,5<br>9,1 | 11,0       | 11,0         | 12,6<br>13,9 | 14,2<br>15,8 | 14,9<br>16,7 | 16,4<br>18,6 | 19,8<br>22,9 | 22,9<br>26,9 | 25,0         | 28,1         |              |              |  |  |
| H                                                         | 350        | 4,6                                                        | 5,6        | 6,6        | 7,5        | 8,2<br>8,6 | 9,1        | 11,0       | 12,0<br>12,8 | 15,9         | 17,2         | 18,3         | 20,4         | 25,6         | 20,9         |              |              |              |              |  |  |
|                                                           | 400        | 4,7                                                        | 5,7        | 6,7        | 7,5        | 8,9        | 10,0       | 12,3       | 13,5         | 16,0         | 18,4         | 19,6         | 22,1         | 28,1         |              |              |              |              |              |  |  |
| -                                                         | 450        | 4,8                                                        | 5,8        | 6,9        | 8,0        | 9,1        | 10,0       | 12,8       | 14,1         | 16,7         | 19,4         | 20,8         | 23,5         | 20,1         | l            | 3            | 30,0         | )            |              |  |  |
| H                                                         | 500        | 4,8                                                        | 5,8        | 7,0        | 8,1        | 9,3        | 10,3       | 13,2       | 14,1         | 17,4         | 20,3         | 21,8         | 24,8         |              |              |              | ,,,          |              |              |  |  |
| H                                                         | 550        | 4,9                                                        | 6,0        | 7,0        | 8,3        | 9,5        | 10,8       | 13,6       | 15,1         | 18,0         | 21,1         | 22,7         | 25,9         |              |              |              |              |              |              |  |  |
|                                                           | 600        | 5.0                                                        | 6.0        | 7,1        | 8.4        | 9.7        | 11.0       | 13,9       | 15,1         | 18,6         | 21,1         | 23,5         | 26.9         |              |              |              |              |              |              |  |  |

# Расчетная таблица 2

### Пример расчетов

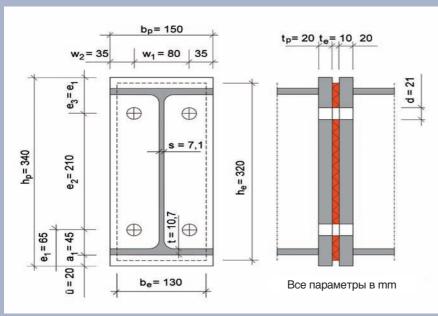



Рис. 1: Пример расчетов концевых пластин на стыке балок: размеры

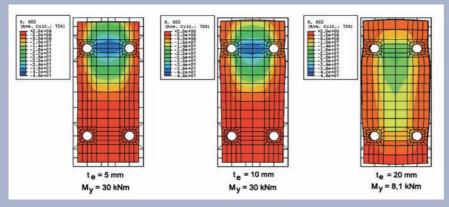



Рис. 2: Влияние толщины эластомера на работу конструкции, расчет методом конечных элементов

# Расчет стыка концевых пластинок, с промежуточной эластомерной опорой

(по: к.т.н. L. Nasdala; к.т.н. В. Hohn, R. Rühl, Ин-т строительного анализа, ун-т г.Ганновер, фак-т гражданского строительства и геодезии, в "Der Bauingenieur" («Инженер-строитель») –11/2005)

Термические мосты в зданиях образуются, когда стальные балки пронизывают оболочку сооружения. Помимо результирующей потери тепла, это зачастую приводит к образованию плесени из-за скапливающегося на внутренней поверхности Если конденсата. невозможно осуществить термоизоляцию наружных металлоконструкций, например, по архитектурным причинам, в таком требуется термическая сепарация наружных и внутренних структур. Термосепарация может быть обеспечена эластомерными опорами с теплопроводностью  $\lambda \approx 0.2$  W/(mK), которая несмотря на то что в 5-10 раз превышает теплопроводность стандартных изоляционных материалов, таких как стекловата или полистирен, более чем в 200 раз ниже, чем у металлоконструкций. Наиболее важное преимущество по сравнению с обычными изоляционными материалами составляет высокая несущая способность опоры.

На рис. 1 показан типичный стык концевых пластинок балок. Детали расчетов данного примера представлены на следующих страницах.



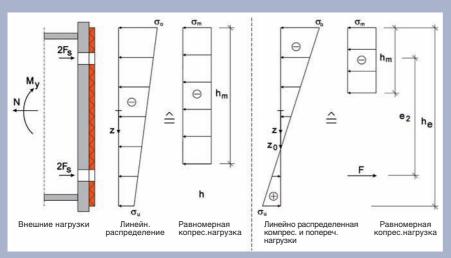



Рис. 3: Определение компрессионной нагрузки в эластомере

Концевые пластины на стыке балок IPE 300 изготовлены из стали S 235. Для эластомера были выбраны высота  $h_e=320$  mm, ширина  $b_e=130$  mm и толщина  $t_e=10$  mm. Крепежи: штифты 4 x M20, класс прочности 10.9 с допуском 1 mm. Далее мы не обсуждаем схему стыка без промежуточного эластомерного слоя согласно EC 3.

Поскольку эластомеры практически несжимаемы, под действием нагрузки они выпирают по краям. Поэтому – по тем же качествам материала – толстые эластомерные плиты не держат такую же нагрузку, как тонкие. Используя коэффициент формы S и взяв в расчет размеры эластомера и количество и диаметр штифтов, можно определить

среднюю допустимую компрессионную нагрузку. Первый определяется как соотношение рабочей поверхности структурной опоры  $A_m$  к соответствующей боковой зоне  $A_s$ .

$$S = \frac{A_{m}}{\Lambda}$$
 [1]

Поскольку точное распределение компрессионной нагрузки неизвестно, для расчетов опоры сначала применяется линейное распределение давления. Как показано на рис. 3, распределение нагрузки переводится с использованием равновесия нормальных сил и моментов в среднюю нагрузку  $\sigma_m$  и рабочую высоту  $h_m$ . Число необходимых отверстий для штифтов зависит от величины данной высоты  $h_m$ .

Для прямоугольной опорной плиты с от 2х до 4х отверстий, коэффициент формы составляет:

$$S = \frac{h_m \cdot b_e - \pi \ d^2/2}{2 \cdot t_e \cdot (h_m + b_e + \pi \ d)}$$
 если  $h_m \le \frac{2}{3} h_e$ 

$$S = \frac{h_m \cdot b_e - \pi d^2}{2 \cdot t_e \cdot (h_m + b_e + 2 \pi d)}$$
 если  $h_m > \frac{2}{3} h_e$ 

Средняя допустимая компрессионная нагрузка в эластомере компактной промежуточной опоры рассчитывается с помощью:

доп. 
$$\sigma_m = \frac{S^2 + S + 1}{0.70} \le 30 \text{ N/mm}^2$$

#### Линейное распределение нагрузки

Если отверстия не учитываются и берется линейное распределение, нагрузка рассчитывается согласно уравнению:

$$\sigma(z) = \frac{N-4 \text{ Fs}}{b_e h_e} + \frac{12 \text{ my}}{b_e h_e^3} z$$
 [5]

с краевыми нагрузками  $\sigma_0 = \sigma$   $(-h_e/2)$  и  $\sigma_u = \sigma$   $(+h_e/2)$ 

Если компьютерный анализ показывает возникновение сил натяжения, они результируют в растягивающую нагрузку штифтов F.

### Пример расчетов

### Пример расчетов

В точке

$$z_0 = \frac{4 F_s - N}{12 M_v} h_e^2 \in \left[ -\frac{h_e}{2}; + \frac{h_e}{2} \right]$$
 [6]

сильный момент  $M_y$  приводит к смене знака,  $\sigma(z_0) = 0$ .

#### Только компрессионная нагрузка

Для

$$z_0 \in \left[ -\frac{h_e}{2}, +\frac{h_e}{2} \right]$$
 и 4 F<sub>s</sub> > N и далее:

$$h_m = h_e + \frac{2 M_y}{N - 4 F_s} \mu$$
 [7]

$$\sigma_{m} = \frac{(N-4 \text{ Fs})^{2}}{b_{e}[h_{e} (N-4 \text{ Fs}) + 2 M_{y}]}$$
 [8]

### **Компрессионная и растягивающая нагрузки**

Для

$$z_o \in \left[-\frac{h_e}{2}; + \frac{h_e}{2}\right]$$
 и  $M_y > 0$  растягивающая

нагрузка штифтов рассчитывается как:

$$F = \frac{N\!-\!4\;F_s}{h_e} \bigg(\frac{h_e}{2} - z_o\bigg) \!+\! \frac{6\,M_y}{h_e^3} \left(\frac{h_{e^2}}{4} - z_{o^2}\right) \label{eq:F} \end{substitute}$$

и применимо следующее:

$$h_m = h_e + \frac{2 M_y - F e_2}{N - 4F_s - F}$$
 и

$$\sigma_m = \frac{(N-4F_s-F)^2}{b_e[h_e(N-4F_s-F)+2\,M_y-F\cdot e_2]} \endaligned \begin{tabular}{l} \$$

#### Пример расчетов:

Изгибающий момент  $M_y = 30 \text{ kNm}$  Нормальная сила N = -20 kN Сила преднапряжения штифтов

F<sub>s</sub> = 80 kN/штифт

$$z_0 = \frac{4 \cdot 80 - (-20)}{12 \cdot 30} \cdot 0.32^2 = 0.097$$
т используя [6]

Т.к.  $M_y > 0$  растягивающая нагрузка штифтов рассчитывается с помощью

$$F = \frac{(-20) - 4 \cdot 80}{0.32} \cdot \left( \frac{0.32}{2} - 0.097 \right) + \frac{6 \cdot 30}{0.32^3} \cdot \left( \frac{0.32^2}{4} - 0.097^2 \right)$$

F = 22 kN

и рабочая высота hm с помощью [10]

$$h_m = 0.32 + \frac{2 \cdot 30 - 22 \cdot 0.21}{-20 - 4 \cdot 80 - 22} = 0.167 \text{ m}$$

Средняя компрессионная нагрузка: [11]

$$\sigma_m = \frac{(-20 - 4 \cdot 80 - 22)^2}{10^3 \cdot 0,13 \ [0,32 \ (-20 - 4 \cdot 80 - 22) + 2 \cdot 30 - 22 \cdot 0,21]}$$

 $\sigma_{\rm m} = 16,67 \text{ N/mm}^2$ 

Из 
$$h_m = 0,167 \text{ m} < \frac{2}{3} 0,32 = 0,21 \text{ m}$$

коэффициент формы рассчитывается с помощью [2]

$$S = \frac{167 \cdot 130 - \pi \cdot 21/2}{2 \cdot 10 \cdot (167 + 130 + \pi \cdot 21)} = 2,9$$

Допустимая опорная нагрузка согласно [4] составляет

доп. 
$$\sigma_m = \frac{2.9^2 + 2.9 + 1}{0.70} = 17,58 \text{ N/mm}^2 \le 30 \text{ N/mm}^2$$

С данным результатом

Действ.  $\sigma_m$  = 16,67 N/mm²  $\leq$  Доп.  $\sigma_m$  = 17,58 N/mm²

соответствие требованиям подтверждается.



### Характеристики

Вследствие высокой твердости материала компактная промежуточная опора – в отличие от обычных, более мягких эластомерных опор – под воздействием нагрузки деформируется незначительно. На практике это означает:

- Высокая твердость материала препятствует возникновению сдвиговых деформаций и ротаций.
- Благодаря превосходной стабильности формы опоры поперечная деформация крайне незначительна.
- Моменты силы передаются без больших деформаций.
- Вследствие своей низкой деформируемости, а также высокой термической сопротивляемости опора особенно подходит для использования в качестве термического барьера между концевыми пластинами на стыке балок несущих стальных конструкций.

### Области применения

Компактные промежуточные опоры применяются во всех видах металлических строительных конструкций для обеспечения термической сепарации, например, при устройстве фасадов зданий, установке оборудования для улавливания солнечной энергии или присоединении балконов и козырьков к основной несущей конструкции.

#### Материал

Эластомерный материал на основе бутадиен-акрилонитрильного каучука, цвет красно-коричневый (общепринятое сокращение: NBR (нитрильный каучук).

Компактные промежуточные опоры обладают устойчивостью к маслу, жиру и горюче-смазочным материалам; они также высокоустойчивы к истиранию и износу.

#### Виды поставки

Компактные промежуточные опоры «Calenberg» поставляются вырезанными под форму и размеры в соответствии с каждым проектом (Рис. 4).

Могут быть сделаны сквозные отверстия, прорези, пазы и т.п. для штифтов или нагелей.

### Размеры

- Толщина опоры: 5, 10, 15, 20 mm
- Макс. размер отреза: 1200 mm x 1200 mm

### Характеристики

### Акты испытаний

### Акты испытаний, свидетельства соответствия

- Федеральное техническое свидетельство № Р-852.0448 Испытания на компрессию, сдвиг и ползучесть в твердых пружинных опорных плитах для зданий "NBR компактная промежуточная опора"; Ин-т испытаний машиностроительных материалов и пластмасс, Технологический ун-т г. Ганновер, 2003.
- Заключение пожарной ПО №3799/7357-AR; безопасности заключение по эластомерным опорам фирмы «Calenberg» в рамках классификации по классу огнеупорности F 90 или F 120 согласно DIN 4102, часть 2 (вып. 9/1977); Уполномоченная инженерностроительная испытательная служба фак-те строительных при материалов, железобетонных конструкций и пожарной безопасности Технологического ун-та г.Брауншвейг; март 2005г.

### Характер горения

Во всех случаях использования эластомерных опор, которые должны соответствовать требованиям пожарной безопасности, применимо заключение по пожарной безопасности №3799/7357-AR-Технологического ун-та г.Брауншвейг. Оно определяет минимальные размеры и другие меры согласно спецификации DIN 4102-2, Brandverhalten von Baustoffen und Bauteilen (Характер распространения пожара в строительных материалах и элементах), 1977-09.-

Содержание настоящего буклета является результатом многолетних исследований и обобщения практического опыта. Вся информация предоставляется добросовестно; однако она не является гарантией определенных свойств, а также не освобождает пользователя от необходимости проведения собственной проверки для обеспечения защиты прав третьих лиц. Любая ответственность за ущерб, вне зависимости от его природы и законного обоснования, проистекающий из даваемых в настоящем буклете рекомендаций, исключается. Вышесказанное не относистя с китуациям, в которых наша компания, наши официальные представители или руководство будут признаны виновными в умышленных действиях или грубой небрежности. Простая неосторожность, повлекшая за собой урон, ответственности напих официальных представителей и сотрудников, и других лиц, нанятых для выполнения наших обязательств.

### Calenberg Ingenieure GmbH

Am Knübel 2-4 D-31020 Salzhemmendorf/Germany Phone +49 (0) 5153/9400-0 Fax +49 (0) 5153/9400-49 info@calenberg-ingenieure.de www.calenberg-ingenieure.de



Рис. 4: Компактные промежуточные опоры «Calenberg», стандартные прорези и виды поставки

